

2201 Broadway | Suite 400 | Oakland, CA 94612 | (510) 834-3200 | Fax (510) 253-0059
www.fehrandpeers.com

MEMORANDUM

Date: March 1, 2019

To: Franz Loewenherz, City of Bellevue

From: Chris Breiland, Dana Weissman, Sarah Saviskas, and David Wasserman, Fehr & Peers

Subject: Task 3A – Value Added Research Findings

SE18-0634

Introduction

To complement the City of Bellevue’s robust collision data analysis, we have leveraged some of
Fehr & Peers’ internal research and development funding to take a take a deeper dive into the City’s
2010-2017collision data. The purpose of this value-added research is to better understand potential
contributing/correlating factors with traffic collisions that may have applicability in other
communities. By narrowing factors that are potentially related to traffic collisions, we can help
Bellevue and other cities be more proactive and targeted in getting to the vision of zero serious
injuries and fatalities in the future. The balance of this memorandum describes the analyses
performed on the collision data. Overall, our analysis focused on the relationships between
collisions and several key factors:

Geographic
• Top corridors for collisions
• High injury network

Land Use

• Adjacent land use designation
• Population and employment density
• Adjacency to schools

Speed and Volume

• Speed normalized by volumes

Equity and Demographics
• Low income and minority populations

Turning Vehicles

• Collisions by mode and vehicle turning movements

Franz Loewenherz
March 2019
Page 2 of 16

2

Geographic Relationships

Through our research of other Vision Zero cities, geographic analyses are often used to identify
corridors or portions of the roadway network that have a disproportionate share of killed or
seriously injured (KSI) collisions. A Vision Zero best practice is to identify a “High Injury Network”
(HIN) that is a specific subset of the roadway network that can easily be mapped, and multiple City
departments can prioritize for proactive education, enforcement, engineering, and engagement for
the benefits of all modes. With this background in mind, we identified the top 10 corridors for all
collisions, bicycle collisions, and pedestrian collisions, respectively.1 These corridors are listed in
Tables 1-3 below. The corridors were ranked by developing a total collision score.2 Keep in mind
that these corridors are not constrained by the HIN, but rather the HIN shows where the
preponderance of collisions occur on these corridors. Of particular significance is where a corridor
shows up in multiple tables, as these are corridors with high overall collision totals and high totals
for pedestrians and/or bicycles.

When developing the collision scores, top ten corridors, and the HIN, KSI collisions are weighted
more heavily than less-severe collisions. Our research indicates that there is no commonly accepted
weight for KSI collisions, but in developing HINs and geographic collision analysis for nearly a dozen
other communities, we typically apply a weight of 20 for KSI collisions. In other words, a single KSI
collision is the equivalent of 20 non-severe collisions.

1 Note that we focus on pedestrian and bicycle collisions because Bellevue data indicate that these modes

are particularly vulnerable for KSI collisions. Bicycle and pedestrian modes are involved in about 5 percent
of all collisions in Bellevue over the past 10 years, but they are involved in about 43 percent of all KSI
collisions.

2 The total collision score is a normalized index of the number of total collisions on each street, weighted by
collision severity.

Franz Loewenherz
March 2019
Page 3 of 16

3

Table 1 – Top Ten Corridors for All Collisions
Corridor Total Collision Score*

NE 8TH ST 100
148TH AVE NE 51
BEL RED RD 48
156TH AVE NE 41
140TH AVE NE 36
148TH AVE SE 36
BELLEVUE WAY NE 36
COAL CREEK PKWY SE 34
FACTORIA BLVD SE 29
116TH AVE NE 28

* This table was queried by identifying street name in the collision report. In this table, there are nearly twice
as many collisions on NE 8th Street (weighted) as compared to 148th Ave NE.

Table 2 – Top Ten Corridors for Bicycle Collisions
Corridor Total Collision Score

118TH AVE SE 100
156TH AVE NE 76
140TH AVE NE 75
NE 24TH ST 71
LAKEMONT BLVD SE 70
NORTHUP WAY 44
COAL CREEK PKWY SE 44
116TH AVE NE 40
BEL RED RD 38
W LAKE SAMMAMISH PKWY SE 37

Table 3 – Top Ten Corridors for Pedestrian Collisions
Corridor Total Collision Score

NE 8TH ST 100
156TH AVE SE 68
156TH AVE NE 62
BELLEVUE WAY NE 58
MAIN ST 57
148TH AVE NE 54
NE 2ND ST 53
NE 4TH ST 53
NE 10TH ST 51
NORTHUP WAY 50

Franz Loewenherz
March 2019
Page 4 of 16

4

Tables 1-3 indicate that some corridors are present in the top 10 categories for each of the modes.
For example, NE 8th Street is the top corridor for both total collisions and pedestrian collisions, but
not for bicycle collisions. This fact is not surprising when considering that NE 8th Street is one of the
longer and busier corridors in Bellevue and that it has a few nodes with major pedestrian activity –
Downtown, Wilburton, Crossroads. At the same time, NE 8th Street is so busy that it is not an
attractive bicycling route. The chart below highlights 15 major corridors and their relative collision
scores for total, pedestrian, and bicycle modes.

0

20

40

60

80

100

NE 8TH
 ST

148TH
 AVE N

E

BEL R
ED RD

156TH
 AVE N

E

140TH
 AVE N

E

148TH
 AVE S

E

BELLE
VUE W

AY N
E

COAL C
REE

K PKWY S
E

FA
CTO

RIA BLV
D SE

116TH
 AVE N

E

NORTHUP W
AY

NE 24th AVE

156th AVE S
E

LA
KEM

ONT BLV
D SE

118th AVE S
E

15 Notable Corridors for Total Collisions:
Relative Collision Scores for Bicycles and Pedestrians

Total Collision Score Bicycle Collision Score Pedestrian Collision Score

Franz Loewenherz
March 2019
Page 5 of 16

5

Note in the chart above, the somewhat inverted pattern between total collision and bicycle collision
scores. This may have something to do with the fact that busier auto-oriented streets are less
attractive to bicyclists. A handful of streets, including 156th Avenue NE (near Crossroads), 140th Ave
nue NE, and BelRed Road have relatively high collision scores when evaluating total, bicycle, and
pedestrian collisions. Anecdotally, observations of activities in these areas indicate a relatively high
proportion of pedestrians and bicycles, along with heavy vehicle traffic. Perhaps drivers are less
attuned to active modes in these areas compared to other areas, particularly bicycles when
compared to other activity centers in Bellevue.

To help put the corridor scores in more of a geographic context, we also developed a HIN. The HIN
was created using the same weighting for KSI collisions as described earlier and is not specific to
any particular mode. The HIN is shown in Figure 1 on the following page.

Franz Loewenherz
March 2019
Page 6 of 16

6

Figure 1 – Bellevue High Injury Network

Franz Loewenherz
March 2019
Page 7 of 16

7

As noted in the Figure 1 legend, the HIN covers just 7 percent of the City’s street network, but
includes 57 percent of all the KSI collisions. It is notable that busy areas like Downtown, Factoria,
Overlake, and Crossroads are within the HIN – a pattern that we will see through other lenses
throughout this document. While it is not necessarily surprising that the densest and busiest parts
of the City have more collisions, the HIN does help concentrate where Bellevue should be investing
in reducing KSI collisions. Notably, the busier corridors north of I-90 have a large number of the KSI
collisions in Bellevue, and the Downtown network in general has many collisions.

Land Use Relationships

Our research of other Vision Zero cities suggests that certain land use types might have a greater
number of collisions than others. However, few cities have done a systematic analysis of these
relationships. To help better understand the relationships between land uses and traffic collisions,
we prepared correlations related to adjacent land use designations from the Comprehensive Plan,
population and employment density, and school proximity.

Land Use Designation

We compared collision data to the adjacent land use designations as identified in the
Comprehensive Plan. Table 4 summarizes the results.

Table 4 – Collisions and Land Use
Land Use Total

Collisions
KSI
Collisions

Acres Percent of
Acres

Percent or
KSI
Collisions

Percent of
Total
Collisions

Industrial 103 1 221 1% 1% 1%
Medical 162 1 136 1% 1% 1%
Mixed-Use 3,845 36 1,200 6% 23% 29%
Multi-Family 1,517 22 1,729 8% 14% 11%
Office 1,880 22 1,320 6% 14% 14%
Retail 2,004 14 579 3% 9% 15%
Single-Family 3,715 60 16,333 76% 38% 28%
Total 13,226 156 21,526 100% 100% 100%

A few notable results stand out from Table 4:

• 23 percent of all KSI collisions and 29 percent of all total collisions occur in Mixed Use
land use area, which covers 6 percent of the City.

• 38 percent of all KSI collisions and 28 percent of all total collisions occur in Single-Family
Residential areas, which covers 76 percent of the City.

Franz Loewenherz
March 2019
Page 8 of 16

8

Population and Employment Density

While Table 4 shows that a disproportionate share of KSI collisions occur in Mixed-Use areas of the
City (which include areas like Downtown, Bel-Red, and Eastgate), these areas are also quite dense
and there are more people who have the potential to be in a collision. To control for land use
density, we also evaluated the number of total and KSI collisions by population and employment
quintile (20 percent breaks in the population and employment). These density data come from the
US EPA’s Smart Location Database, which is a nationwide resource that maps more than 90 land
use attributes including housing and employment density
(https://www.epa.gov/smartgrowth/smart-location-mapping#SLD). If collisions and land use
density were equally related, we would expect to see that about 20 percent of all collisions and KSI
collisions would occur within each population and employment quintile. Tables 5 and 6 show the

results of the analysis.

Table 5 – Collisions and Population Density
Population
Density
Quintile

Total
Collisions

KSI
Collisions

Acres Percent of
Acres

Percent or
KSI
Collisions

Percent of
Total
Collisions

0-20 (Low
density) 4,422 50 7,426 31% 33% 32%
20-40 1,614 27 6,987 29% 12% 17%
40-60 1,145 18 4,270 18% 9% 12%
60-80 2,484 28 3,249 13% 19% 18%
80-100 (high
density) 3,561 33 2,277 9% 27% 21%
Total 13,226 156 24,210 100% 100% 100%

Table 6 – Collisions and Employment Density
Population
Density
Quintile

Total
Collisions

KSI
Collisions

Acres Percent of
Acres

Percent or
KSI
Collisions

Percent of
Total
Collisions

0-20 (Low
density) 981 21 7,703 32% 7% 13%
20-40 828 13 6,807 28% 6% 8%
40-60 1,774 20 4,423 18% 13% 13%
60-80 2,106 28 3,142 13% 16% 18%
80-100 (high
density) 7,537 74 2,134 9% 57% 47%
Total 13,226 156 24,210 100% 100% 100%

https://www.epa.gov/smartgrowth/smart-location-mapping#SLD

Franz Loewenherz
March 2019
Page 9 of 16

9

Some notable findings from the population and density analysis include:

• The densest quintile for employment (which represents about 9 percent of the City) has
about 47 percent of all KSI and 57 percent of total collisions in Bellevue; in other words,
areas with high employment density have a disproportionately high incidence of KSI and
total collisions, even when controlling for employment density.

• The distribution of KSI and total collisions are more evenly distributed across the
population density quintiles with no strong patterns across high and low population
density areas.

The results of the employment density analysis echo some findings from the HIN and land use
designation analysis. Notably, areas with high employment densities, mixed-use and office zoning,
and areas like Downtown, Overlake, portions of Crossroads, and Eastgate, have a disproportionately
high rate of total and KSI collisions.

School Proximity

One other land use variable that we evaluated was the relationships between collisions and schools.
Through this analysis, we reviewed all collisions within a quarter-mile of K-12 schools in Bellevue.
Some key results are summarized in Table 7 below.

Table 7 – Collisions and Schools
Collision Location Total Collisions KSI Collisions

(All Modes)
KSI Bicycle
Collisions

KSI Pedestrian
Collisions

Elsewhere 10,785 127 19 44
Near Schools 2,441 29 5 8
Total 13,226 156 24 52
Proportion of Collisions
Near Schools 18% 19% 21% 15%

As can be seen in the table, the proportion of collisions near schools is fairly consistent at about
18-21 percent, which aligns with the proportion of land within a quarter-mile of schools. However,
there is a lower proportion of KSI pedestrian collisions near schools, indicating that the pedestrian
collisions that do occur near schools tend to be less severe. This may be related to the lower speeds
near schools and more awareness of pedestrian activity at these locations.

Franz Loewenherz
March 2019
Page 10 of 16

10

Speed and Volume Relationships

It is well documented (and simple physics) that higher speeds result in more KSI collisions for people
of all modes, but particularly for pedestrians and bicycles who are not protected within a vehicle.
As identified by earlier City of Bellevue analysis, higher-speed streets have a disproportionate share
of total and KSI collisions when compared to their total length.3 Figure 2 highlights this relationship.

Figure 2 – Share of Roadway Speeds and Total/KSI Collisions

While the analysis summarized in Figure 2 provides us with some valuable data about speed limits
and collisions, it does not control for how many vehicles are on the streets. In other words, a typical
street with a speed limit of 25 MPH tends to have much less traffic than a typical street with a speed
limit of 30 MPH (which includes the majority of arterials in Bellevue). Therefore, to control for traffic
volumes, we used a combination of data from the City’s traffic count database and “representative”
traffic counts for roadway segments that Bellevue does not have observed data for. The
representative data is the average observed ADT by functional classification with some manual
adjustment if there is an adjacent count that can be used to refine the estimate. Using the observed
and representative data, we estimate total vehicle-miles of travel (VMT) for each speed category

3 Note that the analysis only includes City of Bellevue streets – WSDOT highways (I-405, I-90, SR 520) are not

included in this analysis.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

25 MPH 30 MPH 35 MPH 40 MPH

Collisions and Speed Limits

Share of Length Share of Total Collisions Share of KSI Collisions

Franz Loewenherz
March 2019
Page 11 of 16

11

identified above. By estimating VMT, we are able to calculate a collision rate for each speed
category, which controls for how much traffic is on the road. Table 8 summarizes the total and KSI
collisions per million VMT over our analysis period.

Table 8 – Collisions, Speed, and VMT
Speed Limit Total Collisions

per Million
VMT

KSI Collisions
per Million
VMT

Share of Total
Length

Share of Total
VMT

Share of KSI
Collisions

25 MPH 5.986 0.0998 81% 37% 27%
30 MPH 7.255 0.0627 10% 30% 36%
35 MPH 5.618 0.0743 7% 25% 29%
40 MPH 6.287 0.1149 2% 8% 8%

Table 8 shows that total collision rates are higher for streets with 30 MPH speeds. The KSI collision
rate is highest for the roads with speeds of 40 MPH or greater (which represent a relatively small
proportion of Bellevue’s overall road network), which is generally expected. However, the second
highest KSI collision rate is on streets with a speed limit or 25 MPH, which is not typical for other cities.
A deeper dive into the data shows that the KSI rate for pedestrians and bicycles may be influencing
the overall rates, since these modes have relatively high rates, even at these lower speeds. One
factor to note in this analysis is that we have less observed data for streets with 25 MPH, and our
approach of using representative data might overstate the VMT on these roadways. Additional data
would help to refine this approach. Table 9 shows the KSI rate per VMT for bicycles and pedestrians.

Table 9 – Bicycle and Pedestrian KSI Rates by Speed
Speed Limit Bicycle KSI Collisions per Million VMT Pedestrian KSI Collisions per Million

VMT
25 MPH 0.033 0.033
30 MPH 0.010 0.028
35 MPH 0.006 0.025
40 MPH 0.011 0.034

As shown in Table 9, the KSI rate for bicycles in particular is high for the 25 MPH streets (and also
relatively high for pedestrians). This result is likely due to the higher rates of people walking and
biking along slower (and generally lower vehicle volume) streets. Therefore, the collision rate per
VMT likely overstates the risk to people walking and biking along 25 MPH streets, but we do not
have consistent citywide data on bicycle or pedestrian volumes. Regardless, these findings highlight
what other City data already point out—the risk of being killed or seriously injured is much higher
for bicycles or pedestrians involved in a collision compared to people in a vehicle. Minimizing the

Franz Loewenherz
March 2019
Page 12 of 16

12

risk to vulnerable bicyclists and pedestrians should be an important goal of Bellevue’s Vision Zero
strategy.

Equity and Demographics

Bellevue City staff provided Census block groups in Bellevue with a high prevalence of low income
populations and people of color. Using these data, we reviewed the collision data to determine if
these areas have a higher prevalence of total and KSI collisions. The low income and high minority
population areas constitute about 15 percent of the City’s land area and 19 percent of the
population. Figure 3 on the following page shows a map of these areas.

The results of the equity and demographic analysis indicates the following:

• 27 percent of all collisions
• 35 percent of all pedestrian collisions
• 25 percent of all bicycle collisions
• 23 percent of all KSI collisions

As can be inferred from the bullets above, when accounting for land area and population, areas of
low income and high minority populations are slightly over-represented for total, KSI, and bicycle
collisions. However, there is a more pronounced disparity related to pedestrian collisions in these
areas.

Turning Vehicles

Recent analysis by New York City (https://bit.ly/2pvoPa5) has shed light on the significance of
pedestrian and bicycle safety and turning vehicles. Based on these insights, we took a closer
examination of how turning vehicles are related to pedestrian and bicycle safety.

Perhaps the most striking outcome of our turning vehicle data review is the fact that bicycle
collisions are coded differently in the collision reports than other collision types. Notably, the
direction of travel (turning, going straight, etc.) for vehicle-bicycle collisions is rarely recorded, while
it is commonly recorded for pedestrian and vehicle-vehicle collisions. Therefore, we were unable to
derive any insights about the significance of turning vehicles and bicycle safety. However, anecdotal
information from Bellevue’s recent (January 2019) public survey on traffic safety highlighted a few
notable stories/examples of bicyclists that were hit by vehicles making turns.

https://bit.ly/2pvoPa5

Franz Loewenherz
March 2019
Page 13 of 16

13

Figure 3 – Areas of Low Income and High Minority Populations

Franz Loewenherz
March 2019
Page 14 of 16

14

Below are some notable findings of the pedestrian and turning vehicle data analysis:

• About two-thirds of all pedestrian collisions are related to turning vehicles; this compares
to 20 percent for vehicle-vehicle collisions.

• For pedestrians, collisions involving left-turns are 1.4 times more likely to lead to a KSI
outcome compared to right turns; pedestrian collisions with a vehicle traveling straight
are 2.4 times more likely to result in a KSI collision compared to right turns. This is likely
due to the speed of the vehicle (right-turning vehicles tend to travel slower than left-turn
or through vehicles).

• 35 percent of all pedestrian collisions are related to right turning vehicles; this compares
to 29 percent for left turning vehicles. There is room to better educate vehicles to watch
for pedestrians when turning.

In addition to turning vehicle collision analysis, we worked to evaluate collisions relative to traffic
signal operations (cycle length, left-turn phasing, etc.). However, given the complexities of
Bellevue’s advanced adaptive traffic signal system, we did not have enough time/data to perform a
detailed analysis and gain any insight from traffic signal operations. However, data from other cities
indicates that protected left-turn phasing tends to have safer outcomes for pedestrians, bicycles,
and vehicles. Future analysis of traffic signal operations and safety outcomes could be beneficial to
help the City balance mobility and safety outcomes.

Conclusions

The value-added research yielded a number of notable relationships from a geographic, land use,
speed/volume, equity/demographics, and turning vehicles perspective. Below are some key take-
aways:

• A large proportion of KSI collisions occur on a relatively small length of total City of
Bellevue streets. A High Injury Network (HIN) was identified that covers about 7 percent
of the City’s streets, but includes 56 percent of all the KSI collisions.

• A disproportionate share of total and KSI collisions occur in the City’s mixed-use areas,
particularly those areas with high employment density. This higher share of collisions is
disproportionate in terms of both the total land area covered by mixed-use areas and
activity-levels generated by the dense employment areas. While we expect higher-density
areas to have higher total numbers of total and KSI collisions, the magnitude of the
difference in collision totals (particularly for high employment density areas) was larger
than we expected. As Bellevue continues to densify, this trend warrants monitoring.

• Areas around schools have a “typical” level of total and KSI collisions, although the
severity of pedestrian collisions tends to be lower, potentially due to lower speeds and
more driver awareness.

• Collision rates for total and KSI collisions generally tend to increase with speed, which is
expected. However, the KSI collision rate for low-speed, 25 MPH roads, was the second

Franz Loewenherz
March 2019
Page 15 of 16

15

highest in the City. This factor may have to do with the fact that pedestrians and bicyclists
use these lower-volume roads at a greater rate, which skews the KSI rate per VMT up.

• Areas of the City with higher proportions of low income and minority populations have a
somewhat higher rate of total and KSI collisions when considering population and
geographic extent. However, the rate of pedestrian collisions was notably higher in these
areas.

• Turning vehicles are involved with a disproportionate number of pedestrian collisions,
when compared to vehicle-vehicle collisions. While anecdotal evidence hints that this
trend might also be true for bicycles, there is no data to substantiate this hypothesis
because of limitations of how bicycle collision data is recorded.

While the analysis results above span a range of topics, they can all help to focus Bellevue’s Vision
Zero program to achieve the greatest outcome. In short, the higher-speed streets in the denser,
mixed-use areas of the City should be areas of attention for Bellevue. Additionally, helping to reduce
vehicle turning collisions on these streets could go far to help protect the more vulnerable users of
the transportation system—pedestrians and bicyclists.

Franz Loewenherz
March 2019
Page 16 of 16

16

Appendix A

This appendix contains the raw output from Fehr & Peers GIS queries on the Bellevue collision data.

Bellevue_Vision_Zero_Analysis
This notebook documents Fehr & Peers metric development efforts for Bellevue's Vision Zero Action Plan.
Guidelines are as follows:

Metric development should occur using the shared library or copies of it. If you need to move it locally,
merge your code additions to the shared library.

Develop metrics in 1-2 cells per metric by using function calls to the library with functions you add.

If different files are created, the format assumed for an easy merge is.

Markdown Cell: Metric Name

Python Cell: Operations in python not more than 15 lines. If longer, add abstractions in sharedlib. Plots/Data
QAQC should be done in separate cells to be removed later.

In [1]: import pandas as pd
import arcpy
import numpy as np
import seaborn as sns
import os
import CollisionProfileLib as CP
from IPython.display import HTML
arcpy.env.overwriteOutput = True

In [2]: pd.set_option('display.max_rows', 100)
pd.set_option('display.max_columns', 100)

Set Up Paths.

In [3]: main_dir = r"N:\Projects\Non_SanJose_Projects\SE Projects\SE18-0634_Be
llevue_Vision_Zero\Analysis_DW\Model"
project_db = os.path.join(main_dir,"Project_Data.gdb")
base_fds = os.path.join(project_db,"Base_Data")
street_network = os.path.join(base_fds,"Final_HIN_VS4_BellevueSt")
net_copy = os.path.join(base_fds,"Correlation_Network")
collisions = os.path.join(base_fds,"AllCollisions_CityStreets_LX_DataW
SDOT_2010_2017_Clipped")
final_joined_collisions = os.path.join(base_fds,"AllCollisions_CityStr
eets_LX_DataWSDOT_2010_2017_WSpatialDataJned")
in_mem = "in_memory"

Associate Collision Data With Other Datasets
Associate collision data to various contextual datasets using Near and Spatial Joins.

In [4]: temp_collisions = os.path.join(in_mem,"CollisionsCurrent")
temp_table = os.path.join(in_mem,"TemporaryTable")
temp_fc = os.path.join(in_mem,"TemporaryFC")
arcpy.CopyFeatures_management(collisions,temp_collisions)
arcpy.CopyFeatures_management(temp_collisions,final_joined_collisions)
print("Temporary and Final Collision File Created.")

Get Collision Types
This section has cross tabulations of the following collision variables.:

a. Raw Counts |b. KSI| c. Bike | d. Pedestrian | e. Non-BikePed (vehicle to vehicle)|f. Lighting Conditions| g.
First Collision Movement Classification | h. Road Surface Condition (Wet/Dry/Etc) | i. DUI (taken from driver
fields)

Top 10 Corridors by Weighted Collisions (All, Bike, Ped)

In [5]: original_fields = ['PRIMARY_TR','ROADWAY_SU', 'LIGHTING_C', 'FIRST_COL
L', 'MV_DRIVER_', 'MV_DRIVER1', 'MV_DRIVE_1', 'MV_DRIVE_2', 'MV_DRIVE_
3', 'MV_DRIVE_4','KSI', 'KSI_Bike', 'KSI_Ped', 'KSI_NoBP', 'Wtd_ColAll
', 'Wtd_ColBic', 'Wtd_ColPed', 'Wtd_NoBkPed']
col_df = CP.arcgis_table_to_df(temp_collisions,original_fields)
pivot = pd.pivot_table(col_df,index = ["PRIMARY_TR"], values=['Wtd_Col
All', 'Wtd_ColBic', 'Wtd_ColPed', 'Wtd_NoBkPed'],aggfunc="sum")
print("Top 10 Corridors by All KSI Weighted Collisions")
pivot.sort_values("Wtd_ColAll",ascending=False).head(10).style.bar()

Temporary and Final Collision File Created.

In [6]: print("Top 10 Corridors by Bicycle KSI Weighted Collisions")
pivot.sort_values("Wtd_ColBic",ascending=False).head(10).style.bar()

Top 10 Corridors by All KSI Weighted Collisions

Out[5]:

Wtd_ColAll Wtd_ColBic Wtd_ColPed Wtd_NoBkPed

PRIMARY_TR

NE 8TH ST 1388 12 92 1284

148TH AVE
NE 710 6 50 654

BEL RED RD 661 24 27 610

156TH AVE
NE 563 48 57 458

140TH AVE
NE 506 47 30 429

148TH AVE
SE 501 1 2 498

BELLEVUE
WAY NE 500 2 53 445

COAL
CREEK
PKWY SE

471 28 1 442

FACTORIA
BLVD SE 403 2 32 369

116TH AVE
NE 386 25 25 336

Top 10 Corridors by Bicycle KSI Weighted Collisions

Out[6]:

Wtd_ColAll Wtd_ColBic Wtd_ColPed Wtd_NoBkPed

PRIMARY_TR

118TH AVE
SE 139 63 21 55

156TH AVE
NE 563 48 57 458

140TH AVE
NE 506 47 30 429

NE 24TH ST 298 45 30 223

LAKEMONT
BLVD SE 159 44 0 115

NORTHUP
WAY 375 28 46 301

COAL
CREEK
PKWY SE

471 28 1 442

116TH AVE
NE 386 25 25 336

BEL RED RD 661 24 27 610

W LAKE
SAMMAMISH
PKWY SE

162 23 0 139

In [7]: print("Top 10 Corridors by Pedestrian KSI Weighted Collisions")
pivot.sort_values("Wtd_ColPed",ascending=False).head(10).style.bar()

Top 10 Corridors by Pedestrian KSI Weighted Collisions

Out[7]:

Wtd_ColAll Wtd_ColBic Wtd_ColPed Wtd_NoBkPed

PRIMARY_TR

NE 8TH ST 1388 12 92 1284

156TH AVE
SE 221 23 63 135

156TH AVE
NE 563 48 57 458

BELLEVUE
WAY NE 500 2 53 445

MAIN ST 366 1 52 313

148TH AVE
NE 710 6 50 654

NE 2ND ST 126 1 49 76

NE 4TH ST 354 0 49 305

NE 10TH ST 231 1 47 183

NORTHUP
WAY 375 28 46 301

In [8]: weighted_cols = [i for i in col_df.columns if "Wtd_" in i]
for weight_col in weighted_cols:
 col_df[weight_col.replace("Wtd_","")] = np.where(col_df[weight_col
]>0,1,0)
all_mode_columns = ["ColAll","ColBic","ColPed","NoBkPed"]
all_ksi_columns = [i for i in col_df.columns if "KSI" in i]
all_mode_ksi_cols = all_mode_columns + all_ksi_columns
print("KSI Collisions by Mode")
pd.pivot_table(col_df,index = ["KSI"], values=all_mode_columns,aggfunc
="sum",margins=True,margins_name="Total")

In [9]: mv_drive_cols = [i for i in col_df.columns if "MV_DRIVE" in i] # Add I
ntoxicated Pedestrians (Focus)
for ind,drive_col in enumerate(mv_drive_cols):
 if ind==0:
 col_df["Combined_Drive"] = col_df[drive_col]
 else:
 col_df["Combined_Drive"] = col_df["Combined_Drive"] + ":" +col
_df[drive_col]
col_df["Drive_DUI"] = np.where(col_df["Combined_Drive"].str.contains("
Under Influence"),1,0)
print("Collisions by Mode With a Driver DUI Involved")
pd.pivot_table(col_df,index = ["Drive_DUI"], values=all_mode_columns,a
ggfunc="sum",margins=True,margins_name="Total")

KSI Collisions by Mode

Out[8]:

ColAll ColBic ColPed NoBkPed

KSI

0.0 13070 203 333 12534

1.0 156 24 52 80

Total 13226 227 385 12614

Collisions by Mode With a Driver DUI Involved

Out[9]:

ColAll ColBic ColPed NoBkPed

Drive_DUI

0 12790 226 383 12181

1 436 1 2 433

Total 13226 227 385 12614

In [10]: directional_fields = col_df
dir_df = pd.pivot_table(directional_fields,index = ["FIRST_COLL"], val
ues=["ColAll","ColBic","ColPed","NoBkPed","KSI"],aggfunc="sum",margins
=True,margins_name="Total")
cm = sns.light_palette("red", as_cmap=True,n_colors=20)
dir_df.style.background_gradient(cmap=cm)

Out[10]:

ColAll ColBic ColPed KSI NoBkPed

FIRST_COLL

All other non-collision 6 0 0 0 6

Boulder (stationary) 15 0 0 1 15

Bridge Column, Pier or Pillar 2 0 0 0 2

Bridge Rail - Face 7 0 0 2 7

Building 16 0 1 0 15

Concrete Barrier/Jersey Barrier - Face 10 0 0 0 10

Concrete Barrier/Jersey Barrier - Leading
End 1 0 0 0 1

Culvert and/or other Appurtenance in Ditch 6 0 0 0 6

Curb, Raised Traffic Island or Raised Median
Curb 38 0 0 2 38

Domestic animal (horse, cow, sheep, etc) 1 0 0 0 1

Earth Bank or Ledge 11 0 0 2 11

Entering at angle 2853 0 5 15 2848

Fence 72 0 0 1 72

Fire Hydrant 19 0 0 0 19

From opposite direction - all others 122 0 0 0 122

From opposite direction - both going straight
- one stopped - sideswipe 9 0 0 0 9

From opposite direction - both going straight
- sideswipe 35 0 0 2 35

From opposite direction - both moving -
head-on 28 0 0 1 28

From opposite direction - one left turn - one
right turn 120 0 0 0 120

From opposite direction - one left turn - one

straight 1501 2 2 20 1497

From opposite direction - one stopped -
head-on 12 0 0 0 12

From same direction - all others 293 0 0 0 293

From same direction - both going straight -
both moving - rear-end 707 0 0 1 707

From same direction - both going straight -
both moving - sideswipe 1232 0 1 2 1231

From same direction - both going straight -
one stopped - rear-end 3500 1 0 6 3499

From same direction - both going straight -
one stopped - sideswipe 87 0 0 0 87

From same direction - one left turn - one
straight 108 0 0 0 108

From same direction - one right turn - one
straight 254 1 0 0 253

Guardrail - Face 40 0 1 1 39

Guardrail - Leading End 2 0 0 0 2

Guardrail - Through, Over or Under 2 0 0 0 2

Guide Post 1 0 0 0 1

Linear Curb 31 0 0 1 31

Mailbox 27 0 0 1 27

Manhole Cover 6 0 0 0 6

Metal Sign Post 71 0 0 0 71

Miscellaneous Object or Debris on Road 4 0 0 0 4

Not Stated 4 0 0 0 4

Not stated 1 0 0 0 1

One car entering parked position 10 0 0 0 10

One car leaving parked position 46 0 0 0 46

One parked--one moving 327 0 2 4 325

Other Objects 47 0 0 0 47

Over Embankment - No Guardrail Present 11 0 0 0 11

Person fell, jumped or was pushed from 1 0 0 1 1

vehicle

Retaining Wall (concrete, rock, brick, etc.) 53 0 0 1 53

Roadway Ditch 29 0 0 4 29

Rock Bank or Ledge 5 0 0 0 5

Same direction -- both turning left -- both
moving -- rear end 8 0 0 0 8

Same direction -- both turning left -- both
moving -- sideswipe 77 0 0 0 77

Same direction -- both turning left -- one
stopped -- rear end 11 0 0 0 11

Same direction -- both turning right -- both
moving -- rear end 16 0 0 0 16

Same direction -- both turning right -- both
moving -- sideswipe 51 0 0 0 51

Same direction -- both turning right -- one
stopped -- rear end 116 0 0 0 116

Same direction -- both turning right -- one
stopped -- sideswipe 4 0 0 0 4

Signal Pole 54 0 0 2 54

Street Light Pole or Base 90 0 0 1 90

Temporary Traffic Sign, Barricade or
Construction Materials 5 0 0 0 5

Traffic Island 9 0 0 0 9

Tree or Stump (stationary) 202 0 0 7 202

Underside of Bridge 1 0 0 0 1

Utility Box 13 0 0 1 13

Utility Pole 56 0 0 2 56

Vehicle - Pedalcyclist 223 223 0 23 0

Vehicle Strikes Deer 2 0 0 0 2

Vehicle backing hits pedestrian 5 0 5 1 0

Vehicle going straight hits pedestrian 117 0 117 22 0

Vehicle hits Pedestrian - All Other Actions 5 0 5 3 0

Vehicle overturned 67 0 0 2 67

Compute Colliisions by Movement
Look to see if a right, left, or straight movement is involved in any collision. This is done by searching all the
options above for right,left, and straight in the "FIRST_COLL" field. Keep in mind that there is double
counting in this tabulation (a collision involve a right and left turn for exmaple).

In [11]: col_df["LEFT_TURN_INVOLVED"] = np.where(col_df["FIRST_COLL"].str.cont
ains("left"),1,0)
col_df["RIGHT_TURN_INVOLVED"] = np.where(col_df["FIRST_COLL"].str.cont
ains("right"),1,0)
col_df["MOVING_STRAIGHT_INVOLVED"] = np.where(col_df["FIRST_COLL"].str
.contains("straight"),1,0)
pd.pivot_table(directional_fields,index = ["LEFT_TURN_INVOLVED"], valu
es=all_mode_ksi_cols,aggfunc="sum",margins=True,margins_name="Total").
reindex(all_mode_ksi_cols,axis=1)

In [12]: pd.pivot_table(directional_fields,index = ["RIGHT_TURN_INVOLVED"], val
ues=all_mode_ksi_cols,aggfunc="sum",margins=True,margins_name="Total")
.reindex(all_mode_ksi_cols,axis=1)

Vehicle turning left hits pedestrian 110 0 110 12 0

Vehicle turning right hits pedestrian 135 0 135 11 0

Wood Sign Post 66 0 1 1 65

Total 13226 227 385 156 12614

Out[11]:

ColAll ColBic ColPed NoBkPed KSI KSI_Bike KSI_Ped KSI_NoBP

LEFT_TURN_INVOLVED

0 11291 225 273 10793 124.0 23.0 39.0 62.0

1 1935 2 112 1821 32.0 1.0 13.0 18.0

Total 13226 227 385 12614 156.0 24.0 52.0 80.0

Out[12]:

ColAll ColBic ColPed NoBkPed KSI KSI_Bike KSI_Ped

RIGHT_TURN_INVOLVED

0 12530 226 250 12054 145.0 24.0 41.0

1 696 1 135 560 11.0 0.0 11.0

Total 13226 227 385 12614 156.0 24.0 52.0

In [13]: pd.pivot_table(directional_fields,index = ["MOVING_STRAIGHT_INVOLVED"]
, values=all_mode_ksi_cols,aggfunc="sum",margins=True,margins_name="To
tal").reindex(all_mode_ksi_cols,axis=1)

Collisions by Surface Conditions

In [14]: print("All vs. KSI Collisions by Surface Conditions")
pd.pivot_table(col_df,index = ['ROADWAY_SU'], values=all_mode_ksi_cols
,aggfunc="sum",margins=True,margins_name="Total").reindex(all_mode_ksi
_cols,axis=1)

Collisions by Lighting Condition

Out[13]:

ColAll ColBic ColPed NoBkPed KSI KSI_Bike KSI_Ped

MOVING_STRAIGHT_INVOLVED

0 5676 223 265 5188 103.0 23.0 29.0

1 7550 4 120 7426 53.0 1.0 23.0

Total 13226 227 385 12614 156.0 24.0 52.0

All vs. KSI Collisions by Surface Conditions

Out[14]:

ColAll ColBic ColPed NoBkPed KSI KSI_Bike KSI_Ped KSI_NoBP

ROADWAY_SU

3 0 0 3 0.0 0.0 0.0 0.0

Dry 9027 192 251 8584 107.0 18.0 33.0 56.0

Ice 53 1 3 49 2.0 1.0 0.0 1.0

Other 11 0 0 11 1.0 0.0 0.0 1.0

Sand/Mud/Dirt 5 0 0 5 0.0 0.0 0.0 0.0

Snow/Slush 39 0 1 38 2.0 0.0 1.0 1.0

Standing
Water 15 0 0 15 0.0 0.0 0.0 0.0

Unknown 88 0 3 85 0.0 0.0 0.0 0.0

Wet 3985 34 127 3824 44.0 5.0 18.0 21.0

Total 13226 227 385 12614 156.0 24.0 52.0 80.0

In [15]: print("All vs. KSI Collisions by Lighting Condition")
pd.pivot_table(col_df,index = ["LIGHTING_C"], values=["ColAll","KSI"],
aggfunc="sum",margins=True,margins_name="Total")

Proximity To Schools
This section evaluates how being within 1/4 mile of different school types relates to collision counts. ES
represents elementary schools, MS is middle schools, HS is Highschools, and Coll is college. KSI collisions
are tabulated by quarter mile band, then all collisions by mode/KSI are reported by whether or not they are
near an Elementary,Middle, or Highschool (Primary to Secondary Education).

All vs. KSI Collisions by Lighting Condition

Out[15]:

ColAll KSI

LIGHTING_C

2 0.0

Dark-No Street Lights 163 2.0

Dark-Street Lights Off 37 0.0

Dark-Street Lights On 2899 57.0

Dawn 138 1.0

Daylight 9558 92.0

Dusk 352 3.0

Other 3 1.0

Unknown 74 0.0

Total 13226 156.0

In [16]: schools = os.path.join(base_fds,"Bellevue_Schools")
temp_school = os.path.join(in_mem,"SchoolTemp")
school_fields = []
for value in ["ES","MS","HS","COLL"]:
 print("Processing value ", value)
 arcpy.Select_analysis(schools,temp_school, where_clause="TYPE = '{
0}'".format(value))
 field_name = "{0}_Sch_Qrt_Mi".format(value)
 field_dist = field_name+"_DIST"
 arcpy.GenerateNearTable_analysis(temp_collisions, temp_school,temp
_table, search_radius="0.5 Miles", closest="ALL")
 sch_df = CP.arcgis_table_to_df(temp_table,["IN_FID","NEAR_FID","NE
AR_DIST"])
 sch_df[field_name] = np.where(sch_df["NEAR_DIST"] < 1320,1, 0)
 sch_df[field_dist] = sch_df["NEAR_DIST"]
 grp_by_df = sch_df.groupby(by="IN_FID")
 summary_df = grp_by_df.agg({field_dist:"min",field_name:"max"})
 summary_df = summary_df[[field_name,field_dist]]
 col_df = pd.merge(col_df,summary_df,left_index=True,right_index=Tr
ue,how = 'left')
 col_df = col_df.fillna({field_name:0,field_dist:-1})
 school_fields.append(field_name)
col_df["PrimaryToSecondary_Sch_Qrt_Mi"] = (col_df["ES_Sch_Qrt_Mi"] + c
ol_df["HS_Sch_Qrt_Mi"] + col_df["MS_Sch_Qrt_Mi"]).clip(0,1)
school_fields.append("PrimaryToSecondary_Sch_Qrt_Mi")
Add School Summary to HIN Tabulations
print("KSI Collisions by Whether They Are 1/4 Mile Away from a School"
)
pd.pivot_table(col_df,index = ["KSI"], values= school_fields,aggfunc="
sum",margins=True,margins_name="Total")

Processing value ES
Processing value MS
Processing value HS
Processing value COLL
KSI Collisions by Whether They Are 1/4 Mile Away from a School

Out[16]:

COLL_Sch_Qrt_Mi ES_Sch_Qrt_Mi HS_Sch_Qrt_Mi MS_Sch_Qrt_Mi PrimaryToSecondary_Sch_Qrt_Mi

KSI

0.0 438.0 1672.0 613.0 573.0 2412.0

1.0 5.0 23.0 5.0 5.0 29.0

Total 443.0 1695.0 618.0 578.0 2441.0

In [17]: print("Number of Collisions by Mode & KSI that are within 1/4 Mile of
an Elementary, Middle, or High School")
pd.pivot_table(col_df,index = ["PrimaryToSecondary_Sch_Qrt_Mi"], value
s= all_mode_ksi_cols,aggfunc="sum",margins=True,margins_name="Total").
reindex(all_mode_ksi_cols,axis=1)

Adjacent Land Use

Number of Collisions by Mode & KSI that are within 1/4 Mile of an El
ementary, Middle, or High School

Out[17]:

ColAll ColBic ColPed NoBkPed KSI KSI_Bike KSI_Ped

PrimaryToSecondary_Sch_Qrt_Mi

0.0 10785 182 315 10288 127.0 19.0 44.0

1.0 2441 45 70 2326 29.0 5.0 8.0

Total 13226 227 385 12614 156.0 24.0 52.0

In [18]: join_fc = os.path.join(base_fds,"Bellevue_Comprehensive_Plan")
join_fields = ["GeneralLUC","ComplanDes"]
f_map = CP.generate_statistical_fieldmap(temp_collisions,join_fc,merge
_rule_dict={"FIRST":join_fields})
arcpy.SpatialJoin_analysis(temp_collisions,join_fc,temp_fc,match_optio
n="CLOSEST",field_mapping=f_map)
#IF the list has a string inside of it, one of the fields has a partia
l match to the
new_fields = [i.name for i in arcpy.ListFields(temp_fc) if ["Field Mat
ch" for j in join_fields if j in i.name]]
summary_df = CP.arcgis_table_to_df(temp_fc,new_fields)
summary_df.columns = join_fields
col_df = pd.merge(col_df,summary_df,left_index=True,right_index=True,h
ow = 'left')
pd.pivot_table(col_df,index = join_fields[0], values=all_mode_ksi_cols
,aggfunc="sum",margins=True,margins_name="Total").reindex(all_mode_ksi
_cols,axis=1)

Land Use Area Calculations

Out[18]:

ColAll ColBic ColPed NoBkPed KSI KSI_Bike KSI_Ped KSI_NoBP

GeneralLUC

Light
Industrial 103 2 1 100 1.0 0.0 1.0 0.0

Medical 162 1 6 155 1.0 0.0 0.0 1.0

Mixed-Use 3845 39 124 3682 36.0 3.0 21.0 12.0

Multi-family 1517 29 50 1438 22.0 2.0 8.0 12.0

Office 1880 35 41 1804 22.0 4.0 6.0 12.0

Retail 2004 22 69 1913 14.0 1.0 4.0 9.0

Single-
family 3715 99 94 3522 60.0 14.0 12.0 34.0

Total 13226 227 385 12614 156.0 24.0 52.0 80.0

In [19]: lu_fc = os.path.join(base_fds,"Bellevue_Comprehensive_Plan")
lu_fields = ["GeneralLUC","ComplanDes","SHAPE@"]
lu_df = CP.arcgis_table_to_df(lu_fc,lu_fields)
lu_df["ACRES"] = lu_df["SHAPE@"].apply(lambda x: x.getArea(units="ACRE
S"))
lu_pivot = pd.pivot_table(lu_df,index = lu_fields[0], values=["ACRES"]
,aggfunc="sum",margins=True,margins_name="Total")
lu_pivot["Percent of Area"] = lu_pivot["ACRES"]/lu_pivot.loc["Total","
ACRES"] * 100
lu_pivot

Bike Facilities
(Only Evaluates Right Side Existing Facilities- check on codes later)

Out[19]:

ACRES Percent of Area

GeneralLUC

Camp and Conference Center 9.316584 0.043280

Light Industrial 220.662499 1.025086

Medical 135.549679 0.629695

Mixed-Use 1200.164661 5.575356

Multi-family 1729.005733 8.032083

Office 1319.631238 6.130337

Retail 578.745644 2.688558

Single-family 16333.167927 75.875605

Total 21526.243964 100.000000

In [20]: join_fc = os.path.join(base_fds,"Bellevue_Bike_Network")
join_fields = ["RIGHTEXIST","LEFTEXIST"]
search_radius = "100 Feet"
f_map = CP.generate_statistical_fieldmap(temp_collisions,join_fc,merge
_rule_dict={"FIRST":join_fields})
arcpy.SpatialJoin_analysis(temp_collisions,join_fc,temp_fc,match_optio
n="CLOSEST",field_mapping=f_map,search_radius=search_radius)
#IF the list has a string inside of it, one of the fields has a partia
l match to the
new_fields = [i.name for i in arcpy.ListFields(temp_fc) if ["Field Mat
ch" for j in join_fields if j in i.name]]
summary_df = CP.arcgis_table_to_df(temp_fc,new_fields)
summary_df.columns = join_fields
col_df = pd.merge(col_df,summary_df,left_index=True,right_index=True,h
ow = 'left')
pd.pivot_table(col_df,index = join_fields[0], values=all_mode_ksi_cols
,aggfunc="sum",margins=True,margins_name="Total").reindex(all_mode_ksi
_cols,axis=1)
Talk to Bianca - correlate it - Off-St

Priority Development Areas

Out[20]:

ColAll ColBic ColPed NoBkPed KSI KSI_Bike KSI_Ped KSI_NoBP

RIGHTEXIST

5754 79 154 5521 54.0 4.0 18.0 32.0

B 2674 77 66 2531 45.0 13.0 14.0 18.0

C 877 12 27 838 11.0 0.0 3.0 8.0

D 709 22 25 662 12.0 2.0 5.0 5.0

E 357 5 15 337 3.0 0.0 1.0 2.0

F 173 5 6 162 3.0 1.0 0.0 2.0

G 56 3 0 53 2.0 1.0 0.0 1.0

OFFST 51 0 0 51 0.0 0.0 0.0 0.0

Total 10651 203 293 10155 130.0 21.0 41.0 68.0

In [21]: join_fc = os.path.join(base_fds,"Bellevue_Priority_Census_Block_Groups
")
join_fields = ["Priority_Census_Block_Groups"]
search_radius = "10 Feet"
f_map = CP.generate_statistical_fieldmap(temp_collisions,join_fc,merge
_rule_dict={"FIRST":join_fields})
arcpy.SpatialJoin_analysis(temp_collisions,join_fc,temp_fc,match_optio
n="CLOSEST",field_mapping=f_map,search_radius=search_radius)
#IF the list has a string inside of it, one of the fields has a partia
l match to the
new_fields = [i.name for i in arcpy.ListFields(temp_fc) if ["Field Mat
ch" for j in join_fields if j in i.name]]
summary_df = CP.arcgis_table_to_df(temp_fc,new_fields)
summary_df.columns = join_fields
col_df = pd.merge(col_df,summary_df,left_index=True,right_index=True,h
ow = 'left')
col_df = col_df.fillna({i:0 for i in join_fields})
pd.pivot_table(col_df,index = join_fields[0], values=all_mode_ksi_cols
,aggfunc="sum",margins=True,margins_name="Total").reindex(all_mode_ksi
_cols,axis=1)

Priority Area Summary Statistics from EJ Screen
After associating the priority census tracts with EJ screen data, service population, low income population,
minority population, and coverages are calculated by priority area.

Out[21]:

ColAll ColBic ColPed NoBkPed KSI KSI_Bike KSI_Ped

Priority_Census_Block_Groups

0.0 9528 169 250 9109 120.0 22.0 39.0

1.0 3698 58 135 3505 36.0 2.0 13.0

Total 13226 227 385 12614 156.0 24.0 52.0

In [22]: ej_screen = os.path.join(base_fds, "Bellevue_Only_EJScreen_WPriorityId
entified")
ej_fields = ["Priority_Census_Tracts", "ACSTOTPOP","LOWINCOME","MINOR
POP","LESSHS","AREALAND","SHAPE@"]
ej_df = CP.arcgis_table_to_df(ej_screen,ej_fields)
ej_df["ACRES"] = lu_df["SHAPE@"].apply(lambda x: x.getArea(units="ACRE
S"))
ej_pivot = pd.pivot_table(ej_df,index = ej_fields[0], values=["ACSTOTP
OP","LOWINCOME","MINORPOP","LESSHS","AREALAND","ACRES"] ,aggfunc="sum"
,margins=True,margins_name="Total")
ej_pivot["Percent of Area"] = ej_pivot["ACRES"]/ej_pivot.loc["Total","
ACRES"] * 100
ej_pivot

HIN/Street Characteristics
This section has more than just data associations, but multiple cross tabulations of different street
characteristics such as HIN, Speed Limits, Freight Routes, and other characteristics.

Out[22]:

ACRES ACSTOTPOP AREALAND LESSHS LOWINCOME

Priority_Census_Tracts

0 2636.970383 104274 76386718.0 2624 14333

1 462.965001 28727 9897150.0 1647 8188

Total 3099.935384 133001 86283868.0 4271 22521

In [23]: join_fc = os.path.join(base_fds,"Final_HIN_VS7_BellevueSt")
join_fields = ["SpeedLimit","Oneway","FunctionCl","TruckRoute","HIN_75
_Clean","DN_Wtd_ColAll","DN_Wtd_ColPed","DN_Wtd_ColBic","DN_Wtd_NoBkPe
d"]
search_radius = "25 Feet"
f_map = CP.generate_statistical_fieldmap(temp_collisions,join_fc,merge
_rule_dict={"FIRST":join_fields})
arcpy.SpatialJoin_analysis(temp_collisions,join_fc,temp_fc,match_optio
n="CLOSEST",field_mapping=f_map,search_radius=search_radius)
#IF the list has a string inside of it, one of the fields has a partia
l match to the
new_fields = [i.name for i in arcpy.ListFields(temp_fc) if ["Field Mat
ch" for j in join_fields if j in i.name]]
summary_df = CP.arcgis_table_to_df(temp_fc,new_fields)
print(new_fields)
print(join_fields)
summary_df.columns = join_fields
col_df = pd.merge(col_df,summary_df,left_index=True,right_index=True,h
ow = 'left')
col_df = col_df.fillna({i:0 for i in join_fields})
col_df.describe()

In [24]: print("Make 20 MPH the Minimum Speed Limit")
col_df["SpeedLimit"] = np.where(col_df["SpeedLimit"]<=20,20,col_df["Sp
eedLimit"])
col_df["SpeedLimit"].unique()

['FIRSTSpeedLimit', 'FIRSTOneway', 'FIRSTFunctionCl', 'FIRSTTruckRou
te', 'FIRSTHIN_75_Clean', 'FIRSTDN_Wtd_ColAll', 'FIRSTDN_Wtd_ColPed'
, 'FIRSTDN_Wtd_ColBic', 'FIRSTDN_Wtd_NoBkPed']
['SpeedLimit', 'Oneway', 'FunctionCl', 'TruckRoute', 'HIN_75_Clean',
'DN_Wtd_ColAll', 'DN_Wtd_ColPed', 'DN_Wtd_ColBic', 'DN_Wtd_NoBkPed']

Out[23]:

KSI KSI_Bike KSI_Ped KSI_NoBP Wtd_ColAll Wtd_ColBic

count 13226.000000 13226.000000 13226.000000 13226.000000 13226.000000 13226.000000

mean 0.011795 0.001815 0.003932 0.006049 1.224104 0.051641

std 0.107966 0.042561 0.062582 0.077541 2.051359 0.859407

min 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000

25% 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000

50% 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000

75% 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000

max 1.000000 1.000000 1.000000 1.000000 20.000000 20.000000

Make 20 MPH the Minimum Speed Limit

Out[24]: array([40., 25., 30., 35., 20.])

In [25]: print("All Mode and KSI Collisions by Speed Limit")
pd.pivot_table(col_df,index =["SpeedLimit"], values=all_mode_ksi_cols,
aggfunc="sum",margins=True,margins_name="Total").reindex(all_mode_ksi_
cols,axis=1)

In [26]: print("All Mode and KSI Collisions by Location on High Injury Network"
)
pd.pivot_table(col_df,index =["HIN_75_Clean"], values=all_mode_ksi_col
s ,aggfunc="sum",margins=True,margins_name="Total").reindex(all_mode_k
si_cols,axis=1)

Summarize Network Length by Facility Type

All Mode and KSI Collisions by Speed Limit

Out[25]:

ColAll ColBic ColPed NoBkPed KSI KSI_Bike KSI_Ped KSI_NoBP

SpeedLimit

20.0 219 5 15 199 4.0 1.0 2.0 1.0

25.0 2518 49 101 2368 38.0 5.0 10.0 23.0

30.0 5712 110 169 5433 56.0 12.0 22.0 22.0

35.0 3911 49 94 3768 46.0 5.0 15.0 26.0

40.0 866 14 6 846 12.0 1.0 3.0 8.0

Total 13226 227 385 12614 156.0 24.0 52.0 80.0

All Mode and KSI Collisions by Location on High Injury Network

Out[26]:

ColAll ColBic ColPed NoBkPed KSI KSI_Bike KSI_Ped KSI_NoBP

HIN_75_Clean

0.0 5382 121 160 5101 69.0 13.0 19.0 37.0

1.0 7844 106 225 7513 87.0 11.0 33.0 43.0

Total 13226 227 385 12614 156.0 24.0 52.0 80.0

In [27]: join_fc = os.path.join(base_fds,"Final_HIN_VS7_BellevueSt")
join_fields = ["SpeedLimit","Oneway","FunctionCl","TruckRoute","HIN_75
_Clean","SHAPE@"]
street_df = CP.arcgis_table_to_df(join_fc,join_fields)
street_df["SpeedLimit"] = np.where(street_df["SpeedLimit"]<=20,20,stre
et_df["SpeedLimit"])
street_df["MILES"] = street_df["SHAPE@"].apply(lambda x: x.getLength(u
nits="MILES"))
pd.pivot_table(street_df,index =["SpeedLimit"],columns =["HIN_75_Clean
"], values=["MILES"],aggfunc="sum",margins=True,margins_name="Total")

Collision Rates and AADT Normalization
The collision rate is assumed to be calculated as:

Collision Rate

This tranlates to:

We use 350 rather than 365 because weekday VMT is likely higher than weekend VMT. To give some
account for this we use a smaller multiplier. The 7 is to account for the fact we have 7 years of collision data.

(Acciden ts ∗ 1000, 000)
(An n u alVMT)

(Acciden ts ∗ 1000, 000)
(WeekdayAADT ∗ 350 ∗ 7 ∗ Mileso fNetwo rk)

Out[27]:

MILES

HIN_75_Clean 0.0 1.0 Total

SpeedLimit

20 38.884955 NaN 38.884955

25 386.367300 1.214886 387.582186

30 31.822165 19.390490 51.212655

35 23.280754 14.536621 37.817375

40 8.053422 3.446437 11.499859

Total 488.408596 38.588434 526.997031

In [72]: # Ammount AADT Roads
join_fc = os.path.join(base_fds,"Final_HIN_VS7_BellevueSt_WAADT")
join_fields = ["SpeedLimit","FunctionCl","AADT_Final","HIN_75_Clean","
SHAPE@"]
aadt_df = CP.arcgis_table_to_df(join_fc,join_fields).fillna(0)
aadt_df["SpeedLimit"] = np.where(aadt_df["SpeedLimit"]<=20,20,aadt_df[
"SpeedLimit"])
aadt_df["MILES"] = aadt_df["SHAPE@"].apply(lambda x: x.getLength(units
="MILES"))
aadt_df["AADT_MI_Product"] = aadt_df["AADT_Final"] * aadt_df["MILES"]
aadt_pivot = pd.pivot_table(aadt_df,index =["SpeedLimit"], values=["MI
LES","AADT_MI_Product"], aggfunc="sum",margins=True, margins_name="Tot
al")
aadt_pivot["Weighted Avg AADT"] = aadt_pivot["AADT_MI_Product"]/ aadt_
pivot["MILES"]
aadt_pivot["VMT Per Day"] = aadt_pivot["Weighted Avg AADT"] * aadt_pi
vot["MILES"] # Same as AADT_MI_Product
aadt_pivot["VMT Per Year"] = aadt_pivot["VMT Per Day"] * 350
aadt_pivot["VMT Over Study Period"] = aadt_pivot["VMT Per Year"] * 7
speed_pivot = pd.pivot_table(col_df,index =["SpeedLimit"], values=all_
mode_ksi_cols,aggfunc="sum",margins=True,margins_name="Total").reindex
(all_mode_ksi_cols,axis=1)
collision_aadt_miles = pd.merge(aadt_pivot,speed_pivot,left_index=True
,right_index=True)
collision_aadt_miles

Out[72]:

AADT_MI_Product MILES Weighted
Avg AADT VMT Per Day VMT Per

Year

SpeedLimit

20 4.124211e+04 38.884955 1060.618713 4.124211e+04 1.443474e+07

25 6.067063e+05 387.582186 1565.361615 6.067063e+05 2.123472e+08

30 5.174126e+05 51.212655 10103.216970 5.174126e+05 1.810944e+08

35 4.258439e+05 37.817375 11260.536484 4.258439e+05 1.490454e+08

40 1.444548e+05 11.499859 12561.440738 1.444548e+05 5.055918e+07

Total 1.735660e+06 526.997031 3293.490447 1.735660e+06 6.074809e+08

In [73]: col_ksi_columns = [i for i in collision_aadt_miles if "Col" in i or "K
SI" in i or "NoBkP" in i]
collision_per_mile = collision_aadt_miles.copy()
for i in col_ksi_columns:
 collision_per_mile[i+"_Per_1Mil_VMT"] = ((collision_per_mile[i]*1
000000.0)/collision_per_mile["VMT Over Study Period"])
 collision_per_mile = collision_per_mile.drop(i,axis=1)
print("Collision Rates Across Network by Speed Limit")
collision_per_mile.style.background_gradient(cmap=cm)

Collision Rates Across Network by Speed Limit

Out[73]:

AADT_MI_Product MILES
Weighted
Avg
AADT

VMT Per
Day

VMT Per
Year

VMT Over
Study
Period

SpeedLimit

20 41242.1 38.885 1060.62 41242.1 1.44347e+07 1.01043e+08

25 606706 387.582 1565.36 606706 2.12347e+08 1.48643e+09

30 517413 51.2127 10103.2 517413 1.81094e+08 1.26766e+09

35 425844 37.8174 11260.5 425844 1.49045e+08 1.04332e+09

40 144455 11.4999 12561.4 144455 5.05592e+07 3.53914e+08

Total 1.73566e+06 526.997 3293.49 1.73566e+06 6.07481e+08 4.25237e+09

In [74]: hin_filtered_aadt_df = aadt_df[aadt_df["HIN_75_Clean"]==1].copy()
hin_aadt_pivot = pd.pivot_table(hin_filtered_aadt_df,index =["SpeedLim
it"], values=["MILES","AADT_MI_Product"], aggfunc="sum",margins=True,
margins_name="Total")
hin_aadt_pivot["Weighted Avg AADT"] = hin_aadt_pivot["AADT_MI_Product"
]/ hin_aadt_pivot["MILES"]
hin_aadt_pivot["VMT Per Day"] = hin_aadt_pivot["Weighted Avg AADT"] *
hin_aadt_pivot["MILES"] # Same as AADT_MI_Product
hin_aadt_pivot["VMT Per Year"] = hin_aadt_pivot["VMT Per Day"] * 350
hin_aadt_pivot["VMT Over Study Period"] = hin_aadt_pivot["VMT Per Yea
r"] * 7
hin_only_col_df = col_df[col_df["HIN_75_Clean"]==1].copy()
speed_pivot = pd.pivot_table(hin_only_col_df,index =["SpeedLimit"], va
lues=all_mode_ksi_cols,aggfunc="sum",margins=True,margins_name="Total"
).reindex(all_mode_ksi_cols,axis=1)
collision_aadt_miles = pd.merge(hin_aadt_pivot,speed_pivot,left_index=
True,right_index=True)
col_ksi_columns = [i for i in collision_aadt_miles if "Col" in i or "K
SI" in i or "NoBkP" in i]
collision_per_mile = collision_aadt_miles.copy()
for i in col_ksi_columns:
 collision_per_mile[i+"_Per_1Mil_VMT"] = ((collision_per_mile[i]*1
000000.0)/collision_per_mile["VMT Over Study Period"])
 collision_per_mile = collision_per_mile.drop(i,axis=1)
print("Collision Rates on HIN Network by Speed Limit")
collision_per_mile.style.background_gradient(cmap=cm)

Collision Rates on HIN Network by Speed Limit

Out[74]:

AADT_MI_Product MILES
Weighted
Avg
AADT

VMT
Per
Day

VMT Per
Year

VMT Over
Study
Period

SpeedLimit

25 12273.1 1.21489 10102.3 12273.1 4.29559e+06 3.00691e+07

30 247306 19.3905 12754 247306 8.65571e+07 6.059e+08

35 197693 14.5366 13599.7 197693 6.91926e+07 4.84348e+08

40 35512.8 3.44644 10304.2 35512.8 1.24295e+07 8.70063e+07

Total 492785 38.5884 12770.3 492785 1.72475e+08 1.20732e+09

Smart Location Database Associations
In addition to spatial joins, this cell bins the analysis into 5 quintile bins for each census geography before
the join. Column Identies:

D1A- Housing Unit Density (Per Acre)
D1B- Population Density (Per Acre)
D1C -Job Density (Per Acre)
D2A_JPHH - Job Housing Balance
D3b- Intersection Density
D4c - Transit Accessibility

See User Guide for Details: https://www.epa.gov/smartgrowth/smart-location-database-technical-
documentation-and-user-guide (https://www.epa.gov/smartgrowth/smart-location-database-technical-
documentation-and-user-guide)

In [30]: join_fc = os.path.join(base_fds,"Bellevue_Only_SmartLocationDB")
join_fields = ["D1a","D1b","D1c","D2A_JPHH","D3b","D4c"]
CP.add_Percentile_Fields(join_fc,join_fields)

Creating percentile column for field D1a.
Creating percentile column for field D1b.
Creating percentile column for field D1c.
Creating percentile column for field D2A_JPHH.
Creating percentile column for field D3b.
Creating percentile column for field D4c.
Exporting new percentile dataframe to structured numpy array.
Joining new standarized fields to feature class. The new fields are
['Perc_D1a', 'Perc_D1b', 'Perc_D1c', 'Perc_D2A_JPHH', 'Perc_D3b', 'P
erc_D4c', 'DFIndexJoin']
Script Completed Successfully.

https://www.epa.gov/smartgrowth/smart-location-database-technical-documentation-and-user-guide

In [31]: percentile_fields = ["Perc_D1a", "Perc_D1b", "Perc_D1c", "Perc_D2A_JPH
H", "Perc_D3b", "Perc_D4c"]
all_fields = join_fields + percentile_fields
search_radius = "25 Feet"
f_map = CP.generate_statistical_fieldmap(temp_collisions,join_fc,merge
_rule_dict={"FIRST":all_fields})
arcpy.SpatialJoin_analysis(temp_collisions,join_fc,temp_fc,match_optio
n="CLOSEST",field_mapping=f_map,search_radius=search_radius)
#IF the list has a string inside of it, one of the fields has a partia
l match to the
new_fields = [i.name for i in arcpy.ListFields(temp_fc) if ["Field Mat
ch" for j in join_fields if j in i.name]]
summary_df = CP.arcgis_table_to_df(temp_fc,new_fields)
summary_df.columns = all_fields
col_df = pd.merge(col_df,summary_df,left_index=True,right_index=True,h
ow = 'left')
col_df = col_df.fillna({i:0 for i in all_fields})
col_df[all_fields].describe()
Add Area Covered by SLD quartiles
Bin by Quartile

Out[31]:

D1a D1b D1c D2A_JPHH D3b

count 13226.000000 13226.000000 13226.000000 13226.000000 13226.000000 13226.000000

mean 5.282753 8.243688 20.544010 6.854027 79.718788 117.670724

std 6.120945 6.673227 31.278584 8.919404 44.047218 75.135395

min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

25% 1.929810 3.705833 1.522838 0.442308 49.215199 62.000000

50% 2.873701 6.628177 7.431520 3.526906 73.064636 108.000000

75% 5.529527 9.787690 20.992206 9.553750 99.672890 152.666667

max 29.335618 35.540567 143.971200 33.630631 246.538910 363.666667

In [32]: quintile_columns = []
quintile_index = [-.01,.2,.4,.6,.8,1.1]
for i in percentile_fields:
 new_col = i.replace("Perc","Quintile_Category")
 col_df[new_col] = pd.cut(col_df[i],quintile_index,labels=["<20th P
ercentile","<40th Percentile","<60th Percentile","<80th Percentile","<
100th Percentile"])
 quintile_columns.append(new_col)
col_df[quintile_columns].head()

In [33]: pd.pivot_table(col_df,index =["Quintile_Category_D1a"], values=all_mod
e_ksi_cols,aggfunc="sum",margins=True,margins_name="Total").reindex(al
l_mode_ksi_cols,axis=1).style.bar()

Out[32]:

Quintile_Category_D1a Quintile_Category_D1b Quintile_Category_D1c Quintile_Category_D2A_JPHH

OBJECTID

1 <20th Percentile <20th Percentile <20th Percentile <20th Percentile

2 <60th Percentile <80th Percentile <40th Percentile <40th Percentile

3 <20th Percentile <20th Percentile <20th Percentile <20th Percentile

4 <60th Percentile <80th Percentile <40th Percentile <40th Percentile

5 <20th Percentile <20th Percentile <20th Percentile <20th Percentile

Out[33]:

ColAll ColBic ColPed NoBkPed KSI KSI_Bike KSI_Ped KSI_NoBP

Quintile_Category_D1a

<20th Percentile 4422 79 94 4249 50 10 13 27

<40th Percentile 1614 49 38 1527 27 6 7 14

<60th Percentile 1145 21 33 1091 18 4 4 10

<80th Percentile 2484 33 79 2372 28 2 11 15

<100th Percentile 3561 45 141 3375 33 2 17 14

Total 13226 227 385 12614 156 24 52 80

In [34]: pd.pivot_table(col_df,index =["Quintile_Category_D1b"], values=all_mod
e_ksi_cols,aggfunc="sum",margins=True,margins_name="Total").reindex(al
l_mode_ksi_cols,axis=1).style.bar()

In [35]: pd.pivot_table(col_df,index =["Quintile_Category_D1c"], values=all_mod
e_ksi_cols,aggfunc="sum",margins=True,margins_name="Total").reindex(al
l_mode_ksi_cols,axis=1).style.bar()

Smart Location Database Area Tabulations
Quintiles summarzied by area of the city.

Out[34]:

ColAll ColBic ColPed NoBkPed KSI KSI_Bike KSI_Ped KSI_NoBP

Quintile_Category_D1b

<20th Percentile 4523 85 83 4355 51 10 10 31

<40th Percentile 1877 52 60 1765 29 7 10 12

<60th Percentile 1849 26 65 1758 23 4 9 10

<80th Percentile 2109 23 48 2038 22 1 5 16

<100th Percentile 2868 41 129 2698 31 2 18 11

Total 13226 227 385 12614 156 24 52 80

Out[35]:

ColAll ColBic ColPed NoBkPed KSI KSI_Bike KSI_Ped KSI_NoBP

Quintile_Category_D1c

<20th Percentile 981 26 19 936 21 3 5 13

<40th Percentile 828 23 21 784 13 2 3 8

<60th Percentile 1774 33 49 1692 20 5 6 9

<80th Percentile 2106 31 58 2017 28 5 9 14

<100th Percentile 7537 114 238 7185 74 9 29 36

Total 13226 227 385 12614 156 24 52 80

In [36]: sld_fc = os.path.join(base_fds,"Bellevue_Only_SmartLocationDB")
sld_df = CP.arcgis_table_to_df(sld_fc,percentile_fields+["SHAPE@"])
for i in percentile_fields:
 new_col = i.replace("Perc","Quintile_Category")
 sld_df[new_col] = pd.cut(sld_df[i],quintile_index,labels=["<20th P
ercentile","<40th Percentile","<60th Percentile","<80th Percentile","<
100th Percentile"])
sld_df["ACRES"] = sld_df["SHAPE@"].apply(lambda x: x.getArea(units="AC
RES"))
sld_pivot = pd.pivot_table(sld_df,index = quintile_columns[0], values=
["ACRES"] ,aggfunc="sum",margins=True,margins_name="Total")
sld_pivot["Percent of Area"] = sld_pivot["ACRES"]/sld_pivot.loc["Total
","ACRES"] * 100
sld_pivot

In [37]: sld_pivot = pd.pivot_table(sld_df,index = quintile_columns[1], values=
["ACRES"] ,aggfunc="sum",margins=True,margins_name="Total")
sld_pivot["Percent of Area"] = sld_pivot["ACRES"]/sld_pivot.loc["Total
","ACRES"] * 100
sld_pivot

Out[36]:

ACRES Percent of Area

Quintile_Category_D1a

<20th Percentile 7426.267161 30.674889

<40th Percentile 6986.729555 28.859338

<60th Percentile 4269.780396 17.636726

<80th Percentile 3249.488269 13.422314

<100th Percentile 2277.332256 9.406733

Total 24209.597637 100.000000

Out[37]:

ACRES Percent of Area

Quintile_Category_D1b

<20th Percentile 7702.629854 31.816431

<40th Percentile 6807.461257 28.118853

<60th Percentile 4423.462678 18.271525

<80th Percentile 3142.342167 12.979737

<100th Percentile 2133.701680 8.813454

Total 24209.597637 100.000000

In [38]: sld_pivot = pd.pivot_table(sld_df,index = quintile_columns[2], values=
["ACRES"] ,aggfunc="sum",margins=True,margins_name="Total")
sld_pivot["Percent of Area"] = sld_pivot["ACRES"]/sld_pivot.loc["Total
","ACRES"] * 100
sld_pivot

Signal Proximity and Character Associations
This portion of the analysis is dedicated to comparing how proximity to signalized intersections by type
relates with accident type and their characteristics.

Out[38]:

ACRES Percent of Area

Quintile_Category_D1c

<20th Percentile 4887.582953 20.188617

<40th Percentile 5179.347417 21.393777

<60th Percentile 5141.643556 21.238038

<80th Percentile 3582.423322 14.797534

<100th Percentile 5418.600389 22.382034

Total 24209.597637 100.000000

In [40]: search_radius = "100 Feet"
f_map = CP.generate_statistical_fieldmap(temp_collisions,join_fc,merge
_rule_dict={"MAX":join_fields})
arcpy.SpatialJoin_analysis(temp_collisions,join_fc,temp_fc,match_optio
n="INTERSECT",field_mapping=f_map,search_radius=search_radius)
#IF the list has a string inside of it, one of the fields has a partia
l match to the
new_fields = [i.name for i in arcpy.ListFields(temp_fc) if ["Field Mat
ch" for j in join_fields if j in i.name]]
summary_df = CP.arcgis_table_to_df(temp_fc,new_fields)
join_fields = [i.replace("SynchroDataOSMMatch_","") for i in join_fiel
ds]
summary_df.columns = join_fields
col_df = pd.merge(col_df,summary_df,left_index=True,right_index=True,h
ow = 'left')
col_df = col_df.fillna({i:0 for i in join_fields})
col_df[join_fields].describe()

In [41]: pd.pivot_table(col_df,index =["Signalized_Intersection"], values=all_m
ode_ksi_cols,aggfunc="sum",margins=True,margins_name="Total").reindex(
all_mode_ksi_cols,axis=1)

Out[40]:

Prot Perm ProtPerm Signalized_Intersection

count 13226.000000 13226.000000 13226.000000 13226.000000

mean 0.132996 0.013458 0.204521 0.435581

std 0.339583 0.115231 0.403367 0.495852

min 0.000000 0.000000 0.000000 0.000000

25% 0.000000 0.000000 0.000000 0.000000

50% 0.000000 0.000000 0.000000 0.000000

75% 0.000000 0.000000 0.000000 1.000000

max 1.000000 1.000000 1.000000 1.000000

Out[41]:

ColAll ColBic ColPed NoBkPed KSI KSI_Bike KSI_Ped KSI_NoBP

Signalized_Intersection

0.0 7465 169 217 7079 107.0 23.0 34.0 50.0

1.0 5761 58 168 5535 49.0 1.0 18.0 30.0

Total 13226 227 385 12614 156.0 24.0 52.0 80.0

In [42]: col_df["Signal Type"] = np.where(col_df["Signalized_Intersection"]==1
, "Signalized Intersection With No Data","Non-Intersection")
col_df["Signal Type"] = np.where(col_df["Perm"]==1, "Permitted",col_d
f["Signal Type"])
col_df["Signal Type"] = np.where(col_df["ProtPerm"]==1 , "Protected-P
ermitted",col_df["Signal Type"])
col_df["Signal Type"] = np.where(col_df["Prot"]==1 , "Protected",col_
df["Signal Type"])
pd.pivot_table(col_df,index =["Signal Type"], values=all_mode_ksi_cols
,aggfunc="sum",margins=True,margins_name="Total").reindex(all_mode_ksi
_cols,axis=1)

Out[42]:

ColAll ColBic ColPed NoBkPed KSI KSI_Bike KSI_Ped KSI_NoBP

Signal Type

Non-
Intersection 7465 169 217 7079 107.0 23.0 34.0 50.0

Permitted 134 3 9 122 1.0 0.0 1.0 0.0

Protected 1759 15 39 1705 7.0 0.0 3.0 4.0

Protected-
Permitted 2705 27 74 2604 27.0 1.0 7.0 19.0

Signalized
Intersection
With No
Data

1163 13 46 1104 14.0 0.0 7.0 7.0

Total 13226 227 385 12614 156.0 24.0 52.0 80.0

In [43]: pd.pivot_table(col_df,index =["Signal Type"], values=["MOVING_STRAIGHT
_INVOLVED","RIGHT_TURN_INVOLVED","LEFT_TURN_INVOLVED"], aggfunc="sum",
margins=True,margins_name="Total")

Count of Signals by Type
This approach is not perfect because some of the ids were very proximal or overlapping. This however does
provide a rough series of numbers of the number of signalized intersections.

Out[43]:

LEFT_TURN_INVOLVED MOVING_STRAIGHT_INVOLVED RIGHT_TURN_INVOLVED

Signal Type

Non-
Intersection 699 4009 233

Permitted 27 71 13

Protected 216 1110 146

Protected-
Permitted 690 1725 194

Signalized
Intersection
With No
Data

303 635 110

Total 1935 7550 696

In [44]: join_fc = os.path.join(base_fds,"Bellevue_Traffic_Signals_OSM")
temp_buff = os.path.join(in_mem,"Sig_Buff")
temp_buffsp = os.path.join(in_mem,"Sig_BuffSP")
temp_join = os.path.join(in_mem,"Sig_Join")
merged_intersections = os.path.join(base_fds,"Bellevue_Traffic_Signals
_OSM_Merged")
join_fields = ["SynchroDataOSMMatch_Prot","SynchroDataOSMMatch_Perm","
SynchroDataOSMMatch_ProtPerm","Signalized_Intersection"]
arcpy.Buffer_analysis(join_fc,temp_buff, dissolve_option="ALL",buffer_
distance_or_field="100 Feet")
arcpy.MultipartToSinglepart_management(temp_buff,temp_buffsp)
field_map = CP.generate_statistical_fieldmap(temp_buffsp,join_fc,merge
_rule_dict={"MAX":join_fields})
arcpy.SpatialJoin_analysis(temp_buffsp,join_fc,temp_join,field_mapping
=field_map)
arcpy.FeatureToPoint_management(temp_join,merged_intersections)
sig_df = CP.arcgis_table_to_df(merged_intersections,["MAXSynchroDataOS
MMatch_Prot","MAXSynchroDataOSMMatch_Perm","MAXSynchroDataOSMMatch_Pro
tPerm","MAXSignalized_Intersection"]).fillna(0)
sig_df.columns = [i.replace("SynchroDataOSMMatch_","").replace("MAX","
") for i in sig_df.columns]
sig_df.sum(axis=0)

Out[44]: Prot 32.0
Perm 8.0
ProtPerm 57.0
Signalized_Intersection 166.0
dtype: float64

	OLE_LINK1
	Notebook.pdf
	MEMORANDUM
	Introduction
	Geographic Relationships
	Land Use Relationships
	Speed and Volume Relationships
	Equity and Demographics
	Turning Vehicles
	Conclusions
	Appendix A
	OLE_LINK1

